Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 602
Filtrar
1.
Nat Cell Biol ; 24(2): 168-180, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35165418

RESUMO

Metastatic breast cancer cells disseminate to organs with a soft microenvironment. Whether and how the mechanical properties of the local tissue influence their response to treatment remains unclear. Here we found that a soft extracellular matrix empowers redox homeostasis. Cells cultured on a soft extracellular matrix display increased peri-mitochondrial F-actin, promoted by Spire1C and Arp2/3 nucleation factors, and increased DRP1- and MIEF1/2-dependent mitochondrial fission. Changes in mitochondrial dynamics lead to increased production of mitochondrial reactive oxygen species and activate the NRF2 antioxidant transcriptional response, including increased cystine uptake and glutathione metabolism. This retrograde response endows cells with resistance to oxidative stress and reactive oxygen species-dependent chemotherapy drugs. This is relevant in a mouse model of metastatic breast cancer cells dormant in the lung soft tissue, where inhibition of DRP1 and NRF2 restored cisplatin sensitivity and prevented disseminated cancer-cell awakening. We propose that targeting this mitochondrial dynamics- and redox-based mechanotransduction pathway could open avenues to prevent metastatic relapse.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Mecanotransdução Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Junções Célula-Matriz/efeitos dos fármacos , Junções Célula-Matriz/metabolismo , Junções Célula-Matriz/patologia , Dinaminas/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Proteínas dos Microfilamentos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Oxirredução , Estresse Oxidativo , Fatores de Alongamento de Peptídeos/metabolismo , Microambiente Tumoral
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074920

RESUMO

Increased intercellular tension is associated with enhanced cell proliferation and tissue growth. Here, we present evidence for a force-transduction mechanism that links mechanical perturbations of epithelial (E)-cadherin (CDH1) receptors to the force-dependent activation of epidermal growth factor receptor (EGFR, ERBB1)-a key regulator of cell proliferation. Here, coimmunoprecipitation studies first show that E-cadherin and EGFR form complexes at the plasma membrane that are disrupted by either epidermal growth factor (EGF) or increased tension on homophilic E-cadherin bonds. Although force on E-cadherin bonds disrupts the complex in the absence of EGF, soluble EGF is required to mechanically activate EGFR at cadherin adhesions. Fully quantified spectral imaging fluorescence resonance energy transfer further revealed that E-cadherin and EGFR directly associate to form a heterotrimeric complex of two cadherins and one EGFR protein. Together, these results support a model in which the tugging forces on homophilic E-cadherin bonds trigger force-activated signaling by releasing EGFR monomers to dimerize, bind EGF ligand, and signal. These findings reveal the initial steps in E-cadherin-mediated force transduction that directly link intercellular force fluctuations to the activation of growth regulatory signaling cascades.


Assuntos
Caderinas/metabolismo , Receptores ErbB/metabolismo , Mecanotransdução Celular , Transdução de Sinais , Adesão Celular , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Humanos , Junções Intercelulares/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Fosforilação , Ligação Proteica , Multimerização Proteica , Transdução de Sinais/efeitos dos fármacos
3.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L162-L173, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851724

RESUMO

Most lung development occurs in the context of cyclic stretch. Alteration of the mechanical microenvironment is a common feature of many pulmonary diseases, with congenital diaphragmatic hernia (CDH) and fetal tracheal occlusion (FETO, a therapy for CDH) being extreme examples with changes in lung structure, cell differentiation, and function. To address limitations in cell culture and in vivo mechanotransductive models, we developed two mouse lung organoid (mLO) mechanotransductive models using postnatal day 5 (PND5) mouse lung CD326-positive cells and fibroblasts subjected to increased, decreased, and cyclic strain. In the first model, mLOs were exposed to forskolin (FSK) and/or disrupted (DIS) and evaluated at 20 h. mLO cross-sectional area changed by +59%, +24%, and -68% in FSK, control, and DIS mLOs, respectively. FSK-treated organoids had twice as many proliferating cells as other organoids. In the second model, 20 h of 10.25% biaxial cyclic strain increased the mRNAs of lung mesenchymal cell lineages compared with static stretch and no stretch. Cyclic stretch increased TGF-ß and integrin-mediated signaling, with upstream analysis indicating roles for histone deacetylases, microRNAs, and long noncoding RNAs. Cyclic stretch mLOs increased αSMA-positive and αSMA-PDGFRα-double-positive cells compared with no stretch and static stretch mLOs. In this PND5 mLO mechanotransductive model, cell proliferation is increased by static stretch, and cyclic stretch induces mesenchymal gene expression changes important in postnatal lung development.


Assuntos
Pulmão/patologia , Organoides/patologia , Estresse Mecânico , Animais , Colforsina/farmacologia , Fibroblastos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Mecanotransdução Celular/genética , Mesoderma/patologia , Camundongos Endogâmicos C57BL , Modelos Biológicos
4.
Am J Physiol Cell Physiol ; 321(6): C1010-C1027, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669509

RESUMO

Piezo is a mechanosensitive cation channel responsible for stretch-mediated Ca2+ and Na+ influx in multiple types of cells. Little is known about the functional role of Piezo1 in the lung vasculature and its potential pathogenic role in pulmonary arterial hypertension (PAH). Pulmonary arterial endothelial cells (PAECs) are constantly under mechanic stretch and shear stress that are sufficient to activate Piezo channels. Here, we report that Piezo1 is significantly upregulated in PAECs from patients with idiopathic PAH and animals with experimental pulmonary hypertension (PH) compared with normal controls. Membrane stretch by decreasing extracellular osmotic pressure or by cyclic stretch (18% CS) increases Ca2+-dependent phosphorylation (p) of AKT and ERK, and subsequently upregulates expression of Notch ligands, Jagged1/2 (Jag-1 and Jag-2), and Delta like-4 (DLL4) in PAECs. siRNA-mediated downregulation of Piezo1 significantly inhibited the stretch-mediated pAKT increase and Jag-1 upregulation, whereas downregulation of AKT by siRNA markedly attenuated the stretch-mediated Jag-1 upregulation in human PAECs. Furthermore, the mRNA and protein expression level of Piezo1 in the isolated pulmonary artery, which mainly contains pulmonary arterial smooth muscle cells (PASMCs), from animals with severe PH was also significantly higher than that from control animals. Intraperitoneal injection of a Piezo1 channel blocker, GsMTx4, ameliorated experimental PH in mice. Taken together, our study suggests that membrane stretch-mediated Ca2+ influx through Piezo1 is an important trigger for pAKT-mediated upregulation of Jag-1 in PAECs. Upregulation of the mechanosensitive channel Piezo1 and the resultant increase in the Notch ligands (Jag-1/2 and DLL4) in PAECs may play a critical pathogenic role in the development of pulmonary vascular remodeling in PAH and PH.


Assuntos
Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Canais Iônicos/biossíntese , Mecanotransdução Celular/fisiologia , Artéria Pulmonar/metabolismo , Regulação para Cima/fisiologia , Adulto , Idoso , Animais , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Hipertensão Pulmonar/patologia , Indóis/farmacologia , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
5.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R672-R686, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34523364

RESUMO

Action potentials depend on voltage-gated sodium channels (NaV1s), which have nine α subtypes. NaV1 inhibition is a target for pathologies involving excitable cells such as pain. However, because NaV1 subtypes are widely expressed, inhibitors may inhibit regulatory sensory systems. Here, we investigated specific NaV1s and their inhibition in mouse esophageal mechanoreceptors-non-nociceptive vagal sensory afferents that are stimulated by low threshold mechanical distension, which regulate esophageal motility. Using single fiber electrophysiology, we found mechanoreceptor responses to esophageal distension were abolished by tetrodotoxin. Single-cell RT-PCR revealed that esophageal-labeled TRPV1-negative vagal neurons expressed multiple tetrodotoxin-sensitive NaV1s: NaV1.7 (almost all neurons) and NaV1.1, NaV1.2, and NaV1.6 (in ∼50% of neurons). Inhibition of NaV1.7, using PF-05089771, had a small inhibitory effect on mechanoreceptor responses to distension. Inhibition of NaV1.1 and NaV1.6, using ICA-121341, had a similar small inhibitory effect. The combination of PF-05089771 and ICA-121341 inhibited but did not eliminate mechanoreceptor responses. Inhibition of NaV1.2, NaV1.6, and NaV1.7 using LSN-3049227 inhibited but did not eliminate mechanoreceptor responses. Thus, all four tetrodotoxin-sensitive NaV1s contribute to action potential initiation from esophageal mechanoreceptors terminals. This is different to those NaV1s necessary for vagal action potential conduction, as demonstrated using GCaMP6s imaging of esophageal vagal neurons during electrical stimulation. Tetrodotoxin-sensitive conduction was abolished in many esophageal neurons by PF-05089771 alone, indicating a critical role of NaV1.7. In summary, multiple NaV1 subtypes contribute to electrical signaling in esophageal mechanoreceptors. Thus, inhibition of individual NaV1s would likely have minimal effect on afferent regulation of esophageal motility.


Assuntos
Potenciais de Ação , Esôfago/inervação , Mecanorreceptores/metabolismo , Mecanotransdução Celular , Nervo Vago/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Motilidade Gastrointestinal , Mecanorreceptores/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Bloqueadores dos Canais de Sódio/farmacologia , Estresse Mecânico , Tetrodotoxina/farmacologia , Fatores de Tempo , Nervo Vago/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/genética
6.
Adv Mater ; 33(42): e2102660, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34476848

RESUMO

Cell-matrix interactions govern cell behavior and tissue function by facilitating transduction of biomechanical cues. Engineered tissues often incorporate these interactions by employing cell-adhesive materials. However, using constitutively active cell-adhesive materials impedes control over cell fate and elicits inflammatory responses upon implantation. Here, an alternative cell-material interaction strategy that provides mechanotransducive properties via discrete inducible on-cell crosslinking (DOCKING) of materials, including those that are inherently non-cell-adhesive, is introduced. Specifically, tyramine-functionalized materials are tethered to tyrosines that are naturally present in extracellular protein domains via enzyme-mediated oxidative crosslinking. Temporal control over the stiffness of on-cell tethered 3D microniches reveals that DOCKING uniquely enables lineage programming of stem cells by targeting adhesome-related mechanotransduction pathways acting independently of cell volume changes and spreading. In short, DOCKING represents a bioinspired and cytocompatible cell-tethering strategy that offers new routes to study and engineer cell-material interactions, thereby advancing applications ranging from drug delivery, to cell-based therapy, and cultured meat.


Assuntos
Materiais Biocompatíveis/química , Mecanotransdução Celular , Animais , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula , Dextranos/química , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Hidrogéis/química , Integrinas/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/química , Oxirredução , Tiramina/química
7.
Nat Commun ; 12(1): 5256, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489407

RESUMO

Tissue repair and healing remain among the most complicated processes that occur during postnatal life. Humans and other large organisms heal by forming fibrotic scar tissue with diminished function, while smaller organisms respond with scarless tissue regeneration and functional restoration. Well-established scaling principles reveal that organism size exponentially correlates with peak tissue forces during movement, and evolutionary responses have compensated by strengthening organ-level mechanical properties. How these adaptations may affect tissue injury has not been previously examined in large animals and humans. Here, we show that blocking mechanotransduction signaling through the focal adhesion kinase pathway in large animals significantly accelerates wound healing and enhances regeneration of skin with secondary structures such as hair follicles. In human cells, we demonstrate that mechanical forces shift fibroblasts toward pro-fibrotic phenotypes driven by ERK-YAP activation, leading to myofibroblast differentiation and excessive collagen production. Disruption of mechanical signaling specifically abrogates these responses and instead promotes regenerative fibroblast clusters characterized by AKT-EGR1.


Assuntos
Indóis/farmacologia , Mecanotransdução Celular/fisiologia , Pele/lesões , Sulfonamidas/farmacologia , Cicatrização/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Colágeno/metabolismo , Feminino , Fibroblastos , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Regeneração Tecidual Guiada , Humanos , Indóis/sangue , Mecanotransdução Celular/efeitos dos fármacos , Análise de Sequência de RNA , Análise de Célula Única , Pele/efeitos dos fármacos , Pele/patologia , Fenômenos Fisiológicos da Pele , Estresse Mecânico , Sulfonamidas/sangue , Suínos , Cicatrização/efeitos dos fármacos
8.
Neuropharmacology ; 196: 108701, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34256047

RESUMO

There is a need to develop a novel analgesic for pain associated with interstitial cystitis/painful bladder syndrome (IC/PBS). The use of the conventional µ-opioid receptor agonists to manage IC/PBS pain is controversial due to adverse CNS effects. These effects are attenuated in benzylideneoxymorphone (BOM), a low-efficacy µ-opioid receptor agonist/δ-opioid receptor antagonist that attenuates thermal pain and is devoid of reinforcing effects. We hypothesize that BOM will inhibit bladder pain by attenuating responses of urinary bladder distension (UBD)-sensitive afferent fibers. Therefore, the effect of BOM was tested on responses of UBD-sensitive afferent fibers in L6 dorsal root from inflamed and non-inflamed bladder of rats. Immunohistochemical (IHC) examination reveals that following the induction of inflammation there were significant high expressions of µ, δ, and µ-δ heteromer receptors in DRG. BOM dose-dependently (1-10 mg/kg, i.v) attenuated mechanotransduction properties of these afferent fibers from inflamed but not from non-inflamed rats. In behavioral model of bladder pain, BOM significantly attenuated visceromotor responses (VMRs) to UBD only in inflamed group of rats when injected either systemically (10 mg/kg, i.v.) or locally into the bladder (0.1 ml of 10 mg/ml). Furthermore, oxymorphone (OXM), a high-efficacy µ-opioid receptor agonist, attenuated responses of mechanosensitive bladder afferent fibers and VMRs to UBD. Naloxone (10 mg/kg, i.v.) significantly reversed the inhibitory effects of BOM and OXM on responses of bladder afferent fibers and VMRs suggesting µ-opioid receptor-related analgesic effects of these compounds. The results reveal that a low-efficacy, bifunctional opioid-based compound can produce analgesia by attenuating mechanotransduction functions of afferent fibers innervating the urinary bladder.


Assuntos
Analgésicos/farmacologia , Compostos de Benzilideno/farmacologia , Cistite Intersticial/fisiopatologia , Mecanotransdução Celular/efeitos dos fármacos , Oximorfona/farmacologia , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides mu/agonistas , Raízes Nervosas Espinhais/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Vias Aferentes , Animais , Cistite Intersticial/metabolismo , Modelos Animais de Doenças , Vértebras Lombares , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Oximorfona/análogos & derivados , Ratos , Raízes Nervosas Espinhais/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34117124

RESUMO

Environmental fluctuations are a common challenge for single-celled organisms; enteric bacteria such as Escherichia coli experience dramatic changes in nutrient availability, pH, and temperature during their journey into and out of the host. While the effects of altered nutrient availability on gene expression and protein synthesis are well known, their impacts on cytoplasmic dynamics and cell morphology have been largely overlooked. Here, we discover that depletion of utilizable nutrients results in shrinkage of E. coli's inner membrane from the cell wall. Shrinkage was accompanied by an ∼17% reduction in cytoplasmic volume and a concurrent increase in periplasmic volume. Inner membrane retraction after sudden starvation occurred almost exclusively at the new cell pole. This phenomenon was distinct from turgor-mediated plasmolysis and independent of new transcription, translation, or canonical starvation-sensing pathways. Cytoplasmic dry-mass density increased during shrinkage, suggesting that it is driven primarily by loss of water. Shrinkage was reversible: upon a shift to nutrient-rich medium, expansion started almost immediately at a rate dependent on carbon source quality. A robust entry into and recovery from shrinkage required the Tol-Pal system, highlighting the importance of envelope coupling during shrinkage and recovery. Klebsiella pneumoniae also exhibited shrinkage when shifted to carbon-free conditions, suggesting a conserved phenomenon. These findings demonstrate that even when Gram-negative bacterial growth is arrested, cell morphology and physiology are still dynamic.


Assuntos
Citoplasma/fisiologia , Escherichia coli/fisiologia , Carbono/deficiência , Carbono/farmacologia , Citoplasma/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Nitrogênio/análise , Fósforo/análise
10.
Angew Chem Int Ed Engl ; 60(33): 18044-18050, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-33979471

RESUMO

Mechanotransduction, the interplay between physical and chemical signaling, plays vital roles in many biological processes. The state-of-the-art techniques to quantify cell forces employ deformable polymer films or molecular probes tethered to glass substrates. However, the applications of these assays in fundamental and clinical research are restricted by the planar geometry and low throughput of microscopy readout. Herein, we develop a DNA-based microparticle tension sensor, which features a spherical surface and thus allows for investigation of mechanotransduction at curved interfaces. The micron-scale of µTS enables flow cytometry readout, which is rapid and high throughput. We applied the method to map and measure T-cell receptor forces and platelet integrin forces at 12 and 56 pN thresholds. Furthermore, we quantified the inhibition efficiency of two anti-platelet drugs providing a proof-of-concept demonstration of µTS to screen drugs that modulate cellular mechanics.


Assuntos
DNA/metabolismo , Ensaios de Triagem em Larga Escala , Actomiosina/farmacologia , Amidas/farmacologia , DNA/química , Relação Dose-Resposta a Droga , Humanos , Mecanotransdução Celular/efeitos dos fármacos , Imagem Óptica , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Piridinas/farmacologia
11.
Sci Rep ; 11(1): 7994, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846502

RESUMO

Mechanosensory neurons use mechanotransduction (MET) ion channels to detect mechanical forces and displacements. Proteins that function as MET channels have appeared multiple times during evolution and occur in at least four different families: the DEG/ENaC and TRP channels, as well as the TMC and Piezo proteins. We found twelve putative members of MET channel families in two spider transcriptomes, but detected only one, the Piezo protein, by in situ hybridization in their mechanosensory neurons. In contrast, probes for orthologs of TRP, ENaC or TMC genes that code MET channels in other species did not produce any signals in these cells. An antibody against C. salei Piezo detected the protein in all parts of their mechanosensory cells and in many neurons of the CNS. Unspecific blockers of MET channels, Ruthenium Red and GsMTx4, had no effect on the mechanically activated currents of the mechanosensory VS-3 neurons, but the latter toxin reduced action potential firing when these cells were stimulated electrically. The Piezo protein is expressed throughout the spider nervous system including the mechanosensory neurons. It is possible that it contributes to mechanosensory transduction in spider mechanosensilla, but it must have other functions in peripheral and central neurons.


Assuntos
Sistema Nervoso Central/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Neurônios/metabolismo , Aranhas/metabolismo , Animais , Sistema Nervoso Central/efeitos dos fármacos , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/química , Canais Iônicos/genética , Mecanotransdução Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rutênio Vermelho/farmacologia , Venenos de Aranha/farmacologia , Aranhas/genética , Homologia Estrutural de Proteína , Tela Subcutânea/metabolismo , Sinapsinas/metabolismo , Transcriptoma/genética
12.
JCI Insight ; 6(7)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33735112

RESUMO

To identify small molecules that shield mammalian sensory hair cells from the ototoxic side effects of aminoglycoside antibiotics, 10,240 compounds were initially screened in zebrafish larvae, selecting for those that protected lateral-line hair cells against neomycin and gentamicin. When the 64 hits from this screen were retested in mouse cochlear cultures, 8 protected outer hair cells (OHCs) from gentamicin in vitro without causing hair-bundle damage. These 8 hits shared structural features and blocked, to varying degrees, the OHC's mechano-electrical transducer (MET) channel, a route of aminoglycoside entry into hair cells. Further characterization of one of the strongest MET channel blockers, UoS-7692, revealed it additionally protected against kanamycin and tobramycin and did not abrogate the bactericidal activity of gentamicin. UoS-7692 behaved, like the aminoglycosides, as a permeant blocker of the MET channel; significantly reduced gentamicin-Texas red loading into OHCs; and preserved lateral-line function in neomycin-treated zebrafish. Transtympanic injection of UoS-7692 protected mouse OHCs from furosemide/kanamycin exposure in vivo and partially preserved hearing. The results confirmed the hair-cell MET channel as a viable target for the identification of compounds that protect the cochlea from aminoglycosides and provide a series of hit compounds that will inform the design of future otoprotectants.


Assuntos
Aminoglicosídeos/efeitos adversos , Cóclea/efeitos dos fármacos , Ototoxicidade/prevenção & controle , Animais , Cóclea/citologia , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero/efeitos dos fármacos , Feminino , Gentamicinas/efeitos adversos , Gentamicinas/farmacologia , Células Ciliadas Auditivas/efeitos dos fármacos , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Camundongos Endogâmicos , Testes de Sensibilidade Microbiana , Fator de Transcrição Associado à Microftalmia/genética , Neomicina/efeitos adversos , Técnicas de Cultura de Órgãos , Ototoxicidade/etiologia , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/farmacologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
13.
Am J Physiol Renal Physiol ; 320(5): F859-F865, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33749323

RESUMO

Bladder afferents play a pivotal role in bladder function such as urine storage and micturition as well as conscious sensations such as urgency and pain. Endocannabinoids are ligands of cannabinoid 1 and 2 (CB1 and CB2) receptors but can influence the activity of a variety of G protein-coupled receptors as well as ligand-gated and voltage-gated channels. It is still not known which classes of bladder afferents are influenced by CB1 and CB2 receptor agonists. This study aimed to determine the role of CB2 receptors in two major classes of afferents in the guinea pig bladder: mucosal and muscular-mucosal. The mechanosensitivity of these two classes was determined by an ex vivo extracellular electrophysiological recording technique. A stable analog of endocannabinoid anandamide, methanandamide (mAEA), potentiated the mechanosensitivity of mucosal bladder afferents in response to stroking. In the presence of a transient receptor potential vanilloid 1 antagonist (capsazepine), the effect of mAEA switched from excitatory to inhibitory. A selective CB2 receptor agonist, 4-quinolone-3-carboxyamide (4Q3C), significantly inhibited the mechanosensitivity of mucosal bladder afferents to stroking. In the presence of a CB2 receptor antagonist, the inhibitory effect of 4Q3C was lost. mAEA and 4Q3C did not affect responses to stretch and/or mucosal stroking of muscular-mucosal afferents. Our findings revealed that agonists of CB2 receptors selectively inhibited the mechanosensitivity of capsaicin-sensitive mucosal bladder afferents but not muscular-mucosal afferents. This may have important implications for understanding of the role of endocannabinoids in modulating bladder function and sensation in health and diseases.NEW & NOTEWORTHY This article describes, for the first time, to our knowledge, the direct inhibitory effect of cannabinoid 2 receptor agonists on guinea pig mucosal bladder afferents. The cannabinoid 2 receptor is involved in pain and inflammation, suggesting that this may be a viable target for treatment of bladder disorders such as cystitis.


Assuntos
Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Mecanotransdução Celular/efeitos dos fármacos , Mucosa/inervação , Músculo Liso/inervação , Neurônios Aferentes/efeitos dos fármacos , Receptor CB2 de Canabinoide/agonistas , Bexiga Urinária/inervação , Animais , Canfanos/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Endocanabinoides/metabolismo , Feminino , Cobaias , Ligantes , Neurônios Aferentes/metabolismo , Pirazóis/farmacologia , Receptor CB2 de Canabinoide/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 320(4): H1609-H1624, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33666506

RESUMO

This study aimed to determine the mechanosensing role of angiotensin II type 1 receptor (AT1R) in flow-induced dilation (FID) and oxidative stress production in middle cerebral arteries (MCA) of Sprague-Dawley rats. Eleven-week old, healthy male Sprague-Dawley rats on a standard diet were given the AT1R blocker losartan (1 mg/mL) in drinking water (losartan group) or tap water (control group) ad libitum for 7 days. Blockade of AT1R attenuated FID and acetylcholine-induced dilation was compared with control group. Nitric oxide (NO) synthase inhibitor Nω-nitro-l-arginine methyl ester (l-NAME) and cyclooxygenase inhibitor indomethacin (Indo) significantly reduced FID in control group. The attenuated FID in losartan group was further reduced by Indo only at Δ100 mmHg, whereas l-NAME had no effect. In losartan group, Tempol (a superoxide scavenger) restored dilatation, whereas Tempol + l-NAME together significantly reduced FID compared with restored dilatation with Tempol alone. Direct fluorescence measurements of NO and reactive oxygen species (ROS) production in MCA, in no-flow conditions revealed significantly reduced vascular NO levels with AT1R blockade compared with control group, whereas in flow condition increased the NO and ROS production in losartan group and had no effect in the control group. In losartan group, Tempol decreased ROS production in both no-flow and flow conditions. AT1R blockade elicited increased serum concentrations of ANG II, 8-iso-PGF2α, and TBARS, and decreased antioxidant enzyme activity (SOD and CAT). These results suggest that in small isolated cerebral arteries: 1) AT1 receptor maintains dilations in physiological conditions; 2) AT1R blockade leads to increased vascular and systemic oxidative stress, which underlies impaired FID.NEW & NOTEWORTHY The AT1R blockade impaired the endothelium-dependent, both flow- and acetylcholine-induced dilations of MCA by decreasing vascular NO production and increasing the level of vascular and systemic oxidative stress, whereas it mildly influenced the vascular wall inflammatory phenotype, but had no effect on the systemic inflammatory response. Our data provide functional and molecular evidence for an important role of AT1 receptor activation in physiological conditions, suggesting that AT1 receptors have multiple biological functions.


Assuntos
Circulação Cerebrovascular , Endotélio Vascular/metabolismo , Leucócitos/metabolismo , Mecanotransdução Celular , Artéria Cerebral Média/metabolismo , Estresse Oxidativo , Receptor Tipo 1 de Angiotensina/metabolismo , Vasodilatação , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Antioxidantes/farmacologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Endotélio Vascular/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Mediadores da Inflamação/metabolismo , Leucócitos/efeitos dos fármacos , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Artéria Cerebral Média/efeitos dos fármacos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
15.
Fertil Steril ; 116(1): 255-265, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33676751

RESUMO

OBJECTIVE: To test whether mechanical substrate stiffness would influence progesterone receptor B (PRB) signaling in fibroid cells. Uterine fibroids feature an excessive extracellular matrix, increased stiffness, and altered mechanical signaling. Fibroid growth is stimulated by progestins and opposed by anti-progestins, but a functional interaction between progesterone action and mechanical signaling has not been evaluated. DESIGN: Laboratory studies. SETTING: Translational science laboratory. PATIENT(S)/ANIMAL(S): Human fibroid cell lines and patient-matched fibroid and myometrial cell lines. INTERVENTION(S): Progesterone receptor B-dependent reporter assays and messenger RNA quantitation in cells cultured on stiff polystyrene plates (3GPa) or soft silicone plates (930KPa). Pharmacologic inhibitors of extracellular signal-related protein kinase (ERK) kinase 1/2 (MEK 1/2; PD98059), p38 mitogen-activated protein kinase (SB202190), receptor tyrosine kinases (RTKs; nintedanib), RhoA (A13), and Rho-associated coiled-coil kinase (ROCK; Y27632). MAIN OUTCOME MEASURE(S): Progesterone-responsive reporter activation. RESULT(S): Fibroid cells exhibited higher PRB-dependent reporter activity with progesterone (P4) in cells cultured on stiff vs. soft plates. Mechanically induced PRB activation with P4 was decreased 62% by PD98059, 78% by nintedanib, 38% by A13, and 50% by Y27632. Overexpression of the Rho-guanine nucleotide exchange factor (Rho-GEF), AKAP13, significantly increased PRB-dependent reporter activity. Collagen 1 messenger RNA levels were higher in fibroid cells grown on stiff vs. soft plates with P4. CONCLUSION(S): Cells cultured on mechanically stiff substrates had enhanced PRB activation via a mechanism that required MEK 1/2 and AKAP13/RhoA/ROCK signaling pathways. These studies provide a framework to explore the mechanisms by which mechanical stiffness affects progesterone receptor activation.


Assuntos
Leiomioma/enzimologia , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Mecanotransdução Celular , Receptores de Progesterona/metabolismo , Neoplasias Uterinas/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Humanos , Leiomioma/genética , Leiomioma/patologia , Ligantes , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Mecanotransdução Celular/efeitos dos fármacos , Poliestirenos/química , Progesterona/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptores de Progesterona/agonistas , Silicones/química , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Quinases Associadas a rho/antagonistas & inibidores
16.
Cell Rep ; 34(11): 108866, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33730577

RESUMO

High dietary salt increases arterial pressure partly through activation of magnocellular neurosecretory cells (MNCVP) that secrete the antidiuretic and vasoconstrictor hormone vasopressin (VP) into the circulation. Here, we show that the intrinsic and synaptic excitation of MNCVP caused by hypertonicity are differentially potentiated in two models of salt-dependent hypertension in rats. One model combined salty chow with a chronic subpressor dose of angiotensin II (AngII-salt), the other involved replacing drinking water with 2% NaCl (salt loading, SL). In both models, we observed a significant increase in the quantal amplitude of EPSCs on MNCVP. However, model-specific changes were also observed. AngII-salt increased the probability of glutamate release by osmoreceptor afferents and increased overall excitatory network drive. In contrast, SL specifically increased membrane stiffness and the intrinsic osmosensitivity of MNCVP. These results reveal that dietary salt increases the excitability of MNCVP through effects on the cell-autonomous and synaptic osmoresponsiveness of MNCVP.


Assuntos
Neurônios/metabolismo , Osmose , Cloreto de Sódio na Dieta/efeitos adversos , Vasopressinas/metabolismo , Angiotensina II , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipertensão/patologia , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Probabilidade , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
17.
Acta Histochem ; 123(3): 151696, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33652374

RESUMO

Sensorineural hearing loss is a health problem with global prevalence. Aminoglycoside antibiotics, for instance gentamicin, may cause ototoxicity in mammals as a result of apoptosis and elevated oxidative stress in cochlear hair cells. Our study aimed to examine the potential effects of theophylline, an HDAC2 agonist, on gentamicin-induced cytotoxicity to sensory hair cells. Mouse cochlear explants and HEI-OC1 cells were in vitro cultured and challenged by gentamicin to induce ototoxicity, with or without theophylline. Cochlear hair cells were evaluated by fluorescent microscopy, and their mechanotransduction was assessed by electrophysiology. Expression levels of HDAC2 and apoptosis pathway factors were also evaluated following gentamicin and theophylline treatments. The functional role of HDAC2 in this setting was investigated by siRNA targeted silencing. Theophylline protected cochlear hair cells from ototoxicity induced by gentamicin, in terms of preserving cochlear structure and mechanotransduction ability, and preventing the activation of the intrinsic apoptosis pathway dose-dependently. HDAC2 expression was downregulated by gentamicin, which could be restored by theophylline. HDAC2 silencing in HEI-OC1 cells negated the beneficial effect of theophylline against gentamicin-induced growth defect and apoptosis activation. Theophylline protects sensory hair cells from gentamicin ototoxicity by maintaining HDAC2 expression. Our study thereby discovers a critical role of HDAC2 in gentamicin-induced ototoxicity, which could shine light on potential therapeutic options for treatment against sensorineural hearing loss.


Assuntos
Apoptose/efeitos dos fármacos , Gentamicinas/farmacologia , Histona Desacetilase 2/metabolismo , Teofilina/farmacologia , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Gentamicinas/metabolismo , Células Ciliadas Auditivas/efeitos dos fármacos , Histona Desacetilase 2/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Teofilina/metabolismo
18.
Cell Death Dis ; 12(3): 226, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649312

RESUMO

Hypertrophic scar (HS) formation is a skin fibroproliferative disease that occurs following a cutaneous injury, leading to functional and cosmetic impairment. To date, few therapeutic treatments exhibit satisfactory outcomes. The mechanical force has been shown to be a key regulator of HS formation, but the underlying mechanism is not completely understood. The Piezo1 channel has been identified as a novel mechanically activated cation channel (MAC) and is reportedly capable of regulating force-mediated cellular biological behaviors. However, the mechanotransduction role of Piezo1 in HS formation has not been investigated. In this work, we found that Piezo1 was overexpressed in myofibroblasts of human and rat HS tissues. In vitro, cyclic mechanical stretch (CMS) increased Piezo1 expression and Piezo1-mediated calcium influx in human dermal fibroblasts (HDFs). In addition, Piezo1 activity promoted HDFs proliferation, motility, and differentiation in response to CMS. More importantly, intradermal injection of GsMTx4, a Piezo1-blocking peptide, protected rats from stretch-induced HS formation. Together, Piezo1 was shown to participate in HS formation and could be a novel target for the development of promising therapies for HS formation.


Assuntos
Sinalização do Cálcio , Cicatriz Hipertrófica/metabolismo , Fibroblastos/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Proteínas de Membrana/metabolismo , Pele/metabolismo , Animais , Apoptose , Sinalização do Cálcio/efeitos dos fármacos , Estudos de Casos e Controles , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Cicatriz Hipertrófica/genética , Cicatriz Hipertrófica/patologia , Cicatriz Hipertrófica/prevenção & controle , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Moduladores de Transporte de Membrana/farmacologia , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Pele/patologia , Venenos de Aranha/farmacologia
19.
Nature ; 590(7846): 509-514, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568813

RESUMO

Mechanosensitive channels sense mechanical forces in cell membranes and underlie many biological sensing processes1-3. However, how exactly they sense mechanical force remains under investigation4. The bacterial mechanosensitive channel of small conductance, MscS, is one of the most extensively studied mechanosensitive channels4-8, but how it is regulated by membrane tension remains unclear, even though the structures are known for its open and closed states9-11. Here we used cryo-electron microscopy to determine the structure of MscS in different membrane environments, including one that mimics a membrane under tension. We present the structures of MscS in the subconducting and desensitized states, and demonstrate that the conformation of MscS in a lipid bilayer in the open state is dynamic. Several associated lipids have distinct roles in MscS mechanosensation. Pore lipids are necessary to prevent ion conduction in the closed state. Gatekeeper lipids stabilize the closed conformation and dissociate with membrane tension, allowing the channel to open. Pocket lipids in a solvent-exposed pocket between subunits are pulled out under sustained tension, allowing the channel to transition to the subconducting state and then to the desensitized state. Our results provide a mechanistic underpinning and expand on the 'force-from-lipids' model for MscS mechanosensation4,11.


Assuntos
Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/química , Canais Iônicos/metabolismo , Canais Iônicos/ultraestrutura , Membranas Artificiais , Fosfatidilcolinas/metabolismo , Detergentes/farmacologia , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Canais Iônicos/química , Canais Iônicos/genética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Modelos Moleculares , Mutação , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacologia , Conformação Proteica/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia
20.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478008

RESUMO

Bioreactors are increasingly implemented for large scale cultures of various mammalian cells, which requires optimization of culture conditions. Such upscaling is also required to produce red blood cells (RBC) for transfusion and therapy purposes. However, the physiological suitability of RBC cultures to be transferred to stirred bioreactors is not well understood. PIEZO1 is the most abundantly expressed known mechanosensor on erythroid cells. It is a cation channel that translates mechanical forces directly into a physiological response. We investigated signaling cascades downstream of PIEZO1 activated upon transitioning stationary cultures to orbital shaking associated with mechanical stress, and compared the results to direct activation of PIEZO1 by the chemical agonist Yoda1. Erythroblasts subjected to orbital shaking displayed decreased proliferation, comparable to incubation in the presence of a low dose of Yoda1. Epo (Erythropoietin)-dependent STAT5 phosphorylation, and Calcineurin-dependent NFAT dephosphorylation was enhanced. Phosphorylation of ERK was also induced by both orbital shaking and Yoda1 treatment. Activation of these pathways was inhibited by intracellular Ca2+ chelation (BAPTA-AM) in the orbital shaker. Our results suggest that PIEZO1 is functional and could be activated by the mechanical forces in a bioreactor setup, and results in the induction of Ca2+-dependent signaling cascades regulating various aspects of erythropoiesis. With this study, we showed that Yoda1 treatment and mechanical stress induced via orbital shaking results in comparable activation of some Ca2+-dependent pathways, exhibiting that there are direct physiological outcomes of mechanical stress on erythroblasts.


Assuntos
Sinalização do Cálcio/fisiologia , Eritroblastos/fisiologia , Estresse Mecânico , Cálcio/metabolismo , Cálcio/farmacologia , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Eritroblastos/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Eritropoese/fisiologia , Humanos , Canais Iônicos/agonistas , Canais Iônicos/fisiologia , Mecanotransdução Celular/efeitos dos fármacos , Mecanotransdução Celular/fisiologia , Pirazinas/farmacologia , Rotação , Tiadiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...